Selasa, 01 Januari 2013

pedoman pengetikan skripsi



ANALISIS REGRESI
Untuk memenuhi tugas terstruktur mata kuliah Aplikom Statistik yang dibimbing oleh bapak Bayu Ilham Pradana, SE, MM.


 









Disusun oleh :
Lilik Choirotul Mafula
115020200111111



UNIVERSITAS BRAWIJAYA
FAKULTAS EKONOMI DAN BISNIS
JURUSAN MANAJEMEN
MALANG
2012


SOAL
Data View
penjualan
promosi
outlet
205
26
159
206
28
164
254
35
198
246
31
184
201
21
150
291
49
208
234
30
184
209
30
154
204
24
149
216
31
175
245
32
192
286
47
201
312
54
248
265
40
166
322
42
287

Variable view
Name
Type
Width
Decimals
Label
Values
Missing
Colums
Align
measure
Penjualan
Numeric
8
0

None
None
8
Right
Scale
Promosi
Numeric
8
0

None
None
8
Right
Scale
outlet
Numeric
8
0

None
None
8
Right
scale



HASIL OUTPUT SPSS
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT penjualan
  /METHOD=ENTER promosi outlet.


Regression

Notes
Output Created
27-Nov-2012 13:22:57
Comments

Input
Data
D:\semester 3\AP. STATISTIK\tugas 29 nov.sav
Active Dataset
DataSet1
Filter
<none>
Weight
<none>
Split File
<none>
N of Rows in Working Data File
15
Missing Value Handling
Definition of Missing
User-defined missing values are treated as missing.
Cases Used
Statistics are based on cases with no missing values for any variable used.
Syntax
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN
  /DEPENDENT penjualan
  /METHOD=ENTER promosi outlet.

Resources
Processor Time
00:00:00,047
Elapsed Time
00:00:00,054
Memory Required
1636 bytes
Additional Memory Required for Residual Plots
0 bytes


[DataSet1] D:\semester 3\AP. STATISTIK\tugas 29 nov.sav



Variables Entered/Removedb
Model
Variables Entered
Variables Removed
Method
dimension0
1
outlet, promosia
.
Enter
a. All requested variables entered.
b. Dependent Variable: penjualan
Model Summary
Model
R
R Square
Adjusted R Square
Std. Error of the Estimate
dimension0
1
,976a
,952
,944
9,757
a. Predictors: (Constant), outlet, promosi

ANOVAb
Model
Sum of Squares
df
Mean Square
F
Sig.
1
Regression
22521,299
2
11260,649
118,294
,000a
Residual
1142,301
12
95,192


Total
23663,600
14



a. Predictors: (Constant), outlet, promosi
b. Dependent Variable: penjualan





Coefficientsa
Model
Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
1
(Constant)
64,639
13,112

4,930
,000
promosi
2,342
,398
,551
5,892
,000
outlet
,535
,101
,496
5,297
,000
a. Dependent Variable: penjualan


* Curve Estimation.
TSET NEWVAR=NONE.
CURVEFIT
  /VARIABLES=penjualan WITH promosi
  /CONSTANT
  /MODEL=LINEAR EXPONENTIAL
  /PRINT ANOVA
  /PLOT FIT.

Curve Fit

Notes
Output Created
27-Nov-2012 13:24:24
Comments

Input
Data
D:\semester 3\AP. STATISTIK\tugas 29 nov.sav
Active Dataset
DataSet1
Filter
<none>
Weight
<none>
Split File
<none>
N of Rows in Working Data File
15
Missing Value Handling
Definition of Missing
User-defined missing values are treated as missing.
Cases Used
Cases with a missing value in any variable are not used in the analysis.
Syntax
CURVEFIT
  /VARIABLES=penjualan WITH promosi
  /CONSTANT
  /MODEL=LINEAR EXPONENTIAL
  /PRINT ANOVA
  /PLOT FIT.

Resources
Processor Time
00:00:01,077
Elapsed Time
00:00:01,052
Use
From
First observation
To
Last observation
Predict
From
First Observation following the use period
To
Last observation
Time Series Settings (TSET)
Amount of Output
PRINT = DEFAULT
Saving New Variables
NEWVAR = NONE   
Maximum Number of Lags in Autocorrelation or Partial Autocorrelation Plots
MXAUTO = 16
Maximum Number of Lags Per Cross-Correlation Plots
MXCROSS = 7
Maximum Number of New Variables Generated Per Procedure
MXNEWVAR = 60
Maximum Number of New Cases Per Procedure
MXPREDICT = 1000
Treatment of User-Missing Values
MISSING = EXCLUDE
Confidence Interval Percentage Value
CIN = 95
Tolerance for Entering Variables in Regression Equations
TOLER = ,0001
Maximum Iterative Parameter Change
CNVERGE = ,001
Method of Calculating Std. Errors for Autocorrelations
ACFSE = IND    
Length of Seasonal Period
Unspecified
Variable Whose Values Label Observations in Plots
Unspecified
Equations Include
CONSTANT


[DataSet1] D:\semester 3\AP. STATISTIK\tugas 29 nov.sav

Model Description
Model Name
MOD_5
Dependent Variable
1
penjualan
Equation
1
Linear
2
Exponentiala
Independent Variable
promosi
Constant
Included
Variable Whose Values Label Observations in Plots
Unspecified
a. The model requires all non-missing values to be positive.
Case Processing Summary

N
Total Cases
15
Excluded Casesa
0
Forecasted Cases
0
Newly Created Cases
0
a. Cases with a missing value in any variable are excluded from the analysis.

Variable Processing Summary

Variables
Dependent
Independent
penjualan
promosi
Number of Positive Values
15
15
Number of Zeros
0
0
Number of Negative Values
0
0
Number of Missing Values
User-Missing
0
0
System-Missing
0
0

Penjualan

Linear
Model Summary

R
R Square
Adjusted R Square
Std. Error of the Estimate

,916
,839
,826
17,127

The independent variable is promosi.

ANOVA


Sum of Squares
df
Mean Square
F
Sig.

Regression
19850,334
1
19850,334
67,673
,000

Residual
3813,266
13
293,328



Total
23663,600
14




The independent variable is promosi.

Coefficients

Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
promosi
3,891
,473
,916
8,226
,000
(Constant)
111,523
16,982

6,567
,000

Exponential

Model Summary

R
R Square
Adjusted R Square
Std. Error of the Estimate

,918
,842
,830
,067

The independent variable is promosi.

ANOVA


Sum of Squares
df
Mean Square
F
Sig.

Regression
,313
1
,313
69,257
,000

Residual
,059
13
,005



Total
,371
14




The independent variable is promosi.

Coefficients

Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
promosi
,015
,002
,918
8,322
,000
(Constant)
142,475
9,490

15,013
,000
The dependent variable is ln(penjualan).

* Curve Estimation.
TSET NEWVAR=NONE.
CURVEFIT
  /VARIABLES=penjualan WITH outlet
  /CONSTANT
  /MODEL=LINEAR EXPONENTIAL
  /PRINT ANOVA
  /PLOT FIT.
Curve Fit
Notes
Output Created
27-Nov-2012 13:24:45
Comments

Input
Data
D:\semester 3\AP. STATISTIK\tugas 29 nov.sav
Active Dataset
DataSet1
Filter
<none>
Weight
<none>
Split File
<none>
N of Rows in Working Data File
15
Missing Value Handling
Definition of Missing
User-defined missing values are treated as missing.
Cases Used
Cases with a missing value in any variable are not used in the analysis.
Syntax
CURVEFIT
  /VARIABLES=penjualan WITH outlet
  /CONSTANT
  /MODEL=LINEAR EXPONENTIAL
  /PRINT ANOVA
  /PLOT FIT.

Resources
Processor Time
00:00:01,014
Elapsed Time
00:00:00,982
Use
From
First observation
To
Last observation
Predict
From
First Observation following the use period
To
Last observation
Time Series Settings (TSET)
Amount of Output
PRINT = DEFAULT
Saving New Variables
NEWVAR = NONE   
Maximum Number of Lags in Autocorrelation or Partial Autocorrelation Plots
MXAUTO = 16
Maximum Number of Lags Per Cross-Correlation Plots
MXCROSS = 7
Maximum Number of New Variables Generated Per Procedure
MXNEWVAR = 60
Maximum Number of New Cases Per Procedure
MXPREDICT = 1000
Treatment of User-Missing Values
MISSING = EXCLUDE
Confidence Interval Percentage Value
CIN = 95
Tolerance for Entering Variables in Regression Equations
TOLER = ,0001
Maximum Iterative Parameter Change
CNVERGE = ,001
Method of Calculating Std. Errors for Autocorrelations
ACFSE = IND    
Length of Seasonal Period
Unspecified
Variable Whose Values Label Observations in Plots
Unspecified
Equations Include
CONSTANT





[DataSet1] D:\semester 3\AP. STATISTIK\tugas 29 nov.sav
Model Description

Model Name
MOD_6

Dependent Variable
1
penjualan

Equation
1
Linear

2
Exponentiala

Independent Variable
outlet

Constant
Included

Variable Whose Values Label Observations in Plots
Unspecified

a. The model requires all non-missing values to be positive.

Case Processing Summary


N

Total Cases
15

Excluded Casesa
0

Forecasted Cases
0

Newly Created Cases
0

a. Cases with a missing value in any variable are excluded from the analysis.

Variable Processing Summary

Variables
Dependent
Independent
penjualan
outlet
Number of Positive Values
15
15
Number of Zeros
0
0
Number of Negative Values
0
0
Number of Missing Values
User-Missing
0
0
System-Missing
0
0

penjualan
Linear
Model Summary

R
R Square
Adjusted R Square
Std. Error of the Estimate

,901
,812
,798
18,495

The independent variable is outlet.

ANOVA


Sum of Squares
Df
Mean Square
F
Sig.

Regression
19216,954
1
19216,954
56,182
,000

Residual
4446,646
13
342,050



Total
23663,600
14




The independent variable is outlet.

Coefficients

Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
outlet
,973
,130
,901
7,495
,000
(Constant)
63,589
24,853

2,559
,024

Exponential
Model Summary

R
R Square
Adjusted R Square
Std. Error of the Estimate

,885
,783
,767
,079

The independent variable is outlet.

ANOVA


Sum of Squares
df
Mean Square
F
Sig.

Regression
,291
1
,291
46,968
,000

Residual
,080
13
,006



Total
,371
14




The independent variable is outlet.

Coefficients

Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
outlet
,004
,001
,885
6,853
,000
(Constant)
119,496
12,634

9,458
,000
The dependent variable is ln(penjualan).

HASIL ANALISIS
1.      Membuktikan Hipotesis
a.       H1 : Meningkatkan aktivitas pemasaran (promosi dan outlet) dapat meningkatkan penjualan. Berdasarkan tabel hasil regresi tersebut hipotesis profesor X terbukti


ANOVAb
Model
Sum of Squares
df
Mean Square
F
Sig.
1
Regression
22521,299
2
11260,649
118,294
,000a
Residual
1142,301
12
95,192


Total
23663,600
14



a. Predictors: (Constant), outlet, promosi
b. Dependent Variable: penjualan
Dengan menggunakan uji F dapat dilihat bahwa nilai signifikan antara penjualan, outlet dan promosi ternyata lebih kecil dari 0,05. Hal tersebut berarti terdapat hubungan yang signifikan antara aktivitas pemasaran (promosi dan outlet) pada penjualan suatu barang.

b.      H2 : Meningkatnya promosi dapat meningkatkan penjualan
Hasil perhitungan menggunakan SPSS melalui uji t menunjukkan

Coefficients

Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
promosi
,015
,002
,918
8,322
,000
(Constant)
142,475
9,490

15,013
,000
The dependent variable is ln(penjualan).








Berdasarkan data tersebut hipotesis kedua dari professor X terbukti ada hubungan yang signifikan antara penjualan dengan promosi, hal tersebut terlihat dari nilai signifikan yang kurang dari 0,05. Yang berarti meningkatknaya promosi dapat pula meningkatkan jumlah penjualan.
Dari grafik tersebut dapat dilihat bahwa titik-titik observasi menyebar mendekati/tidak jauh dari garis linier. Sehingga dapat disimpulkan bahwa kegiatan promosi mempunyai pengaruh yang signifikan terhadap  jumlah penjualan.
 

c.       H3 : Meningkatnya jumlah outlet dapat meningkatkan penjualan

Coefficients

Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
outlet
,973
,130
,901
7,495
,000
(Constant)
63,589
24,853

2,559
,024

Berdasarkan data tersebut hipotesis ketiga dari professor X terbukti ada hubungan yang signifikan antara penjualan dengan outlet, hal tersebut terlihat dari nilai signifikan yang kurang dari 0,05. Yang berarti meningkatnya outlet dapat pula meningkatkan jumlah penjualan.
...
Dari grafik tersebut dapat dilihat bahwa titik-titik observasi menyebar ada yang mendekati/tidak jauh dari garis linier dan ada juga yang sedikit jauh. Sehingga dapat disimpulkan bahwa jumlahoutlet mempunyai pengaruh terhadap jumlah penjualan, namun pengaruhnya tidak sesignifikan kegiatan promosi.
 




2.      Persamaan regresi

Coefficientsa
Model
Unstandardized Coefficients
Standardized Coefficients
t
Sig.
B
Std. Error
Beta
1
(Constant)
64,639
13,112

4,930
,000
promosi
2,342
,398
,551
5,892
,000
outlet
,535
,101
,496
5,297
,000
a. Dependent Variable: penjualan
Dikarenakana dalam penelitian ini menggunakan dua satuan pengukuran yang berbeda yaitu satuan unit dan rupiah maka untuk membuat persamaan regresi dalam penelitian ini menggunakan standardized coefficients beta.
Y = 0,551.X1+0,496.X2


Tidak ada komentar:

Posting Komentar